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1. Introduction

The ¯ash method is a commonly used technique for

the measurement of the thermal di�usivity of ma-

terials. In this method, the front face of the sample

absorbs the ¯ash energy and the rear face temperature

variation is measured.

In practical cases, a coating is often deposited on

the front or rear face of the sample in order to modify

their radiative or electric properties: a metal deposit is

used to make the faces opaque (case of a semi-trans-

parent material) and a ``black'' paint on the front face

can increase the energy absorption (case of a metallic

material). The use of a black coating on the rear face

can also increase its emissivity (case of a temperature

measurement through an infrared detector), while a

metallic coating on the same face (silver paint on a

non-coated material) can be used to warrant the elec-

trical contact of an open junction thermocouple.

The value of the di�usivity measured by the ``Flash

method'' can be strongly a�ected by the use of such a

coating. The aim of this paper is to study the e�ects of

a paint or of a ``sputtered'' thin ®lm on the thermal re-

sponse of the material and to determine if these e�ects

can be neglected.

2. Model

When the material is uniformly stimulated on its
whole front face, heat transfer within the material can

be considered one-directional (see Fig. 1). The model is
given by the solution of the one-dimensional heat
transfer equation [1]. It can be represented by a set of

three quadrupoles [2]:

. A quadrupole associated with the ``coating'' (``c''),
which is completely de®ned by the knowledge of its

thermal conductivity lc, its speci®c heat capacity
�rC �c and its thickness ec: Its di�usivity is de®ned
by: ac � lc=�rC �c: The coating can also be de®ned

by its thermal resistance Rc � ec=lc, its thermal ca-
pacitance Cc � �rC �cec and its characteristic time:
tc � e 2c =ac

. A ``contact resistance'' �Rcr� quadrupole that rep-

resents the imperfect contact between the coating
and the material (``m'').

. A quadrupole, which represents the material that

must be characterized (conductivity lm, heat ca-
pacity �rC �m, di�usivity am � lm=�rC �m).

Each quadrupole is associated to a transfer matrix that

links the Laplace transforms of both temperatures T
and ¯uxes f of the front (subscript ``o'') and back
faces (subscript ``i'') of the material:�
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p is the Laplace variable and the bar denotes the
Laplace transforms of temperatures and ¯uxes.

A, B, C and D depend on the heat conductivity, ca-
pacity and di�usivity of the material:

Ai � Di � cosh�qi �, Bi � 1

li
���������
p=ai
p sinh�qi � and

Ci � li
���������
p=ai

p
sinh�qi � with:

qi � ei
���������
p=ai

p
for i � c or m

In the case considered here, the heat losses are
neglected and the front face stimulation is assumed to

be a heat pulse in time. Q is the absorbed energy by a
unit surface.
In the ¯ash method, the rear face thermogram can

be normalized by its maximum. The value of this
maximum is given by the adiabatic temperature:

Tmax � Q=
ÿ�rC�cec � �rC�mem� �1�

The following equations de®ne the normalized rear
face thermogram:

�T1=Tmax � Cc � Cm

C
�2�

with:

C � Cmp
sinh�qm �

qm

�
cosh�qc � �

sinh�qc �
qc

�
RcrCcp

� Cc

Cm
qm coth�qm �

��
�3�

where: Cm � �rC �mem is the capacitance of the me-

dium and Rm � em=lm its resistance.
In Eq. (3), the bracketed term appears as a correc-

tion term that takes into account the e�ect of both the

coating and the contact resistance.
This model can be used for a direct simulation. We

will see later the results given by such a model (see
Section 4). Using an inverse technique, this model can

also be used to estimate the contact resistance or ther-
mal properties of the two layers material [3].
Nevertheless, it can also be used to develop an

approached model and evaluate the e�ects of the coat-
ing on the di�usivity value that is measured by using a
non-coated material model.

3. Approximated solution of the model

3.1. Series approximation

In order to obtain an approximated solution of the
model that can be compared with the response of the

non-coated material later on, a series expansion in p of
the corrective term of Eq. (3), truncated to its ®rst

term, is implemented:

C � �Cm � Cc �p
sinh�qm �

qm
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If we assume that heat capacities of both, layer and
coating are the same order of magnitude, which is the

case for most non porous materials, and that the thick-
ness of the layer is weak compared to the thickness of
the material (then: Cc � Cm). The following equation

can be derived:

C ' �Cm � Cc �p
sinh�qm �

qm

�
1� pCc

�
Rc

2
� Rcr

� Rm

3

��
�5�

This result clearly shows the importance of the capaci-
tance e�ect of the layer even though these e�ects have

been already taken into account by the reduction of
the thermogram.
Two corrections can be introduced to take the e�ects

of the coating into account:

. A time shift of the thermogram

. A modi®cation of the characteristic time of the ma-

terial

3.2. ``Shifting'' of the thermogram

As a ®rst approximation, the e�ect of the coating
can be interpreted by a shift of the thermogram. Eq.
(5) can be considered as a ®rst order expansion in p of

the following expression:

�T1=Tmax '
�

�T1=Tmax

	
0 exp� ÿ pCc�Rc=2� Rcr

� Rm=2�� �6�

where f �T1=Tmaxg0 is the transient response of the non-
coated material in the Laplace domain (for a ®rst-

order development 1=�1� Kp� ' exp�ÿKp�).
The delay duration is then equal to the quantity:

t1 � Cc�Rc=2� Rcr � Rm=3�: In the case where the

coating resistance and the contact resistance can be
neglected with respect to the material resistance, that is
Rc � Rm and Rcr � Rm, this correction introduced on

the thermogram corresponds to a time delay equal to
CcRm=3:
This relation clearly shows that we have to be
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rebuke to the simple-minded idea that a coating can be
neglected if its thermal resistance is weak compared to

the resistance of the material.

3.3. Modi®cation of the di�usivity

Another technique to obtain a more consistent ther-
mogram is to modify the value of the di�usivity in

order to obtain a thermogram close to the thermogram
of a homogeneous material.
This correction can be obtained by a linear expan-

sion around k � 1 of the expression given by equation:

sinh�qmk�
qmk

� sinh�qm �
qm

� �kÿ 1�ÿcosh�qm �

ÿ sinh�qm �=qm
�� O

ÿ
�kÿ 1� 2

�
�7�

A development of this expression in qm leads to:

sinh�qmk�
qmk

' sinh�qm �
qm

�
1� �kÿ 1�q 2

m=3
� �8�

By an identi®cation of Eqs. (5) and (8), one ®nds:�
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The time delay derived in Section 3.2 can be translated
into an increase of the characteristic time of the me-
dium. We just have to check if this analysis is fully jus-

ti®ed in some practical cases.

4. Case of a two-coating material

The same development as those conducted in a case

of a one-coating material has been derived for a two-
coating material, by taking into account a coating on

both, the rear and the front face of the material. Since
the expression is quite more complicated in the general

case, we make the assumption that the two deposited
layers are similar (see Fig. 2).
The delay duration (See Section 3.2) becomes equal

to t2 � 2t1, with the same assumptions.
Eq. (9) becomes:�
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Thus, one can see that the e�ect on the di�usivity is
emphasized by a two factor if the material is coated on
its two faces.

5. Numerical results Ð one-coating material

To illustrate the preceding approach, a relative thick
coating case is considered. The contact resistance is
neglected. The thickness of the coating is quite large in

order to magnify its e�ects and to test the di�erent ap-
proximations.
Properties of the coating:

lc � 0:6 W mÿ1 Kÿ1 Rc � 2:5� 10ÿ4 K m 2 Wÿ1

�rc�c� 4� 106 J mÿ3 Kÿ1 Cc � 600 J mÿ2 Kÿ1

ec � 150� 10ÿ6 m tc � 0:15 s

Two cases can be considered:

1. An insulating material (see Fig. 3)

lm � 0:2 W mÿ1 Kÿ1 Rm � 2� 10ÿ2 K m 2 Wÿ1

�rc�m� 2� 106 J mÿ3 Kÿ1 Cm � 8000 J mÿ2 Kÿ1

em � 4� 10ÿ3 m tm � 160 s

tshift � 4:075 s

ÿ
e 2=a

�
estÿ

e 2m=am
� � 1:16

2. A conductive material (see Fig. 4)

Fig. 2. Case of a two-coating sample.Fig. 1. Principle of the method.
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lm � 20 W mÿ1 Kÿ1 Rm � 2� 10ÿ4 K m 2 Wÿ1

�rc�m� 2� 106 J mÿ3 Kÿ1 Cm � 8000 J mÿ2 Kÿ1

em � 4� 10ÿ3 m tm � 1:6 s

tshift � 0:115 s

ÿ
e 2=a

�
estÿ

e 2m=am
� � 1:48

In both cases, we compare the responses of the non-

coated material (dots ), of the two-layer material (solid
curve ) with the response obtained by a time-shift of
the thermogram (mixed ) and the response given by a

modi®cation of the characteristic time (doted ).
In the two cases considered here, the correction

obtained by a shift of the thermogram gives satisfac-
tory result of the delayed time introduced on the half

rise time of the thermogram. The modi®cation of the
characteristic time of the medium (see Eq. (9)) consti-
tutes a better correction.

The errors on the di�usivity values are quite large
Ð respectively, 15 and 50% in the case of an insulat-
ing material and a conductive material. This can be

mainly explained by the low conductivity of the coat-
ing �lc � 0:6 W mÿ1 Kÿ1) and its large thickness �ec �
150 mm).

Eq. (9) or (10) can be used to determine the thick-
ness of the coating which has to be considered in order
to reduce this error for instance to 1%. One ®nds that
for both insulating and conductive materials, a 10 mm-

thick coating for one-coating materials or a 5 mm-thick
coating for each layer of two-coating materials allow
to reach this result.

6. Conclusions

To neglect the e�ect of the coating on one face

of the material, the time correction induced by the
presence of the coating must be neglected with respect

to the characteristic time of the non-coated material.
That is:

t1 � Cc�Rc=2� Rcr � Rm=3� � RmCm

This criterion can be decomposed into three criteria
that have to be simultaneously met:

. A characteristic time low compared to the character-

istic time of the material

RcCc � RmCm

. A coating thermal capacitance neglected compared
to the material capacitance

Cc � Cm

. A low e�ect of the contact resistance

RcrCc � RmCm

These criteria remain the same if the material is coated
on its two faces.
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Fig. 3. Case of an insulating material. Fig. 4. Case of a conductive material.
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